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Abstract: We present a method to remove timed delays (timed internal actions) from a subset of 

stochastic automata. After removing the internal actions, the steady state probability of a subset 

of the states of the automata is preserved. The stochastic automata considered in this paper have 

the property of being Markov regenerative processes. 

1. Overview 

Internal or invisible actions in a process often arise due to communication and 

synchronization between the different components of the process [7]. Removing these 

internal actions simplifies the system (to reduce the complication of performance 

analysis), makes it deterministic, and serves in many useful applications such as 

submodule construction [6]. 

We consider in this paper processes whose transitions are triggered by the occurrence of 

stochastically timed events, these processes may be described using generalized semi-

Markov process algebra [1] or stochastic automata [2]. In these systems, removing the 

timed internal action is a challenging open problem.  The approach taken so far to remove 

internal actions from these systems is to separate actions from their timing information by 

splitting every transition into two transitions: one describing the time delay and the other 

is a timeless internal action [1,5], that way removing internal actions from these systems 

becomes the trivial problem of removing timeless internal actions [7]. However, 

separating actions from their timing information doubles the number of transitions for the 

purpose of removing few of these transitions (the ones representing internal actions), so 

this approach does not lead to a simplification of the process. Hence the need for 

removing timed internal actions, which is a challenging and open problem so far. 

In this paper, we present an algorithm to remove timed internal actions, also known as 

timed delays, from a subset of stochastic automata. While removing the internal actions, 

the steady state probability for a subset of the states of the automata is preserved. The 
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subset consists of all those states that do not have an incoming or outgoing internal 

transition.  The performance measures that are preserved after removing the internal 

moves are the ones obtained from a reward model [4] that assigns zero to all the states 

that do not keep their steady state probability. In reliability analysis, a fail state is 

assigned the reward 0 while an up state is assigned the reward 1. So if the fail states and 

the recovery states are not reached from another state via an internal transition (which is 

usually the case) then dependability measures are preserved. 

The class of stochastic automata considered in this paper have the property that at any 

time, the set of active clocks with a general distribution have the same elapsed lifetime, in 

other words they were all enabled at the same time instant, while clocks with an 

exponential delay distribution may be set at arbitrary times. The idea behind the 

algorithm will be presented in more details in subsection 2.2, but we will first present 

some background on Markov regenerative processes and stochastic automata.  

 

2. Introduction 

 

2.1. Markov regenerative processes and Stochastic Automata 

We begin our introduction with some background on Markov regenerative process and 

stochastic automata as these models are heavily used in this paper. To provide a formal 

definition of a Markov regenerative process (MRGP), the notion of a renewal sequence 

must be introduced. The following definitions are taken from [8]: 

 

A Markov renewal sequence is defined as the sequence of pairs of random variables 

),( nn TX  (usually iX  represents the state of the process that was entered at time iT ) for 

which the following properties hold:  

==≤−= −−++ },,....,,,,|,{ 001111 TXTXTiXtTTjXP nnnnnnn  

  ==≤−= ++ }|,{ 11 iXtTTjXP nnnn  

       }|,{ 011 iXtTjXP =≤=  
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where the first equality highlights the Markov property of the process, and the second 

shows it homogeneity. According to this definition, the current state of the process alone 

determines probabilistically the next state and the duration of time in the current state. 

If a Markov renewal sequence ),( nn TX  is associated with a stochastic process )(tY , 

whose behavior between instants nT  and 1+nT  is of any kind, but whose value in 1+nT  is 

determined by nX  alone, this will be called a Markov regenerative process.  Formally 

the following property holds for )(tY : 

}|)({},0),(|)({ iXjtTYPiXTuuYjtTYP nnnnn ==+==≤≤=+  

              }|)({ 0 iXjtYP ===  

So these processes behave like a Markov process relative to instants nT , which we refer 

to as regeneration instants. But between these instants, the process can evolve in any way. 

From an intuitive point of view, it can be said that there are instants ,...,...,, 10 nTTT  

between which the behavior of the process is not affected by its previous history. As the 

process is homogenous, each of the cycles can be studied as if the point of regeneration 

from which the process is examined were 00 =T .  

Two quantities capable of describing the evolution of the MRGP are defined: 

The local kernel )(tE  and the global kernel )(tK . Where 

)|)(()( 01 iXtTjtYPtEij =>∧==  describes the evolution of the process between two 

regeneration instants, and )|)(()( 01 iXtTjtXPtKij =≤∧==  describes the evolution of 

the process at the regeneration instants themselves.  For more details refer to [8] 

 

 

Stochastic automaton (SA) is a state automaton whose transitions are triggered by the 

occurrence of stochastically timed events. We begin first by enumerating the components 

of a SA. A SA is a tuple ),,,,,,( 0 FkACsS a where: 

•  S  is a nonempty set of states with 0s being the initial state.  

• C  is a set of clocks,  

• A  is a set of actions,  
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• SCCAS finfin ×℘×℘××⊆ )())((a  is  the set of edges (where )(Cfin℘  represents 

the set of finite subsets of C ), an element of  a  is represented as ', ss E
Ca⎯→⎯  

where )(),( CACa fin℘×∈ and )(CE fin∈℘ , 

• )(: CSk fin℘→  is the clock setting function which represents all the clocks that 

are initialized when we reach a state,  and  

• ])1,0[(: →ℜ→× SCF  (where ℜ  represents the set of positive real numbers) is 

the clock distribution function such that 0))(( =tcFs  for 0<t and 

1))((lim =∞→ tcFst . For simplicity of notation, we will denote ))(( tcFs  by )(tc s . 

(Note that the distribution of the clock depends on the state it was initialized in). 

 

As soon as state s  is entered, all clocks c  in )(sk  are initialized according to their 

probability distribution function )(cFs . Once initialized, clocks start counting down until 

they either expire or are disabled. A clock expires if it reaches the value 0.  The 

occurrence of an action is controlled by the expiration of clocks. Thus whenever there is a 

transition ', ss E
Ca⎯→⎯  and the system is in state s , action a  can happen as soon as all 

clocks in set C  expire, clocks in E  are then disabled and the automaton moves to state 

's . The active clocks of a state s are formed from the active clocks of the previous state 

that have not expired or disabled together with the set of clocks that are initialized in s : 

)(sk . So if )(s∆ denotes the active clocks of state s , the active clocks in state 's  would 

then be )'()( skCEs +∪−∆ . The clocks in the set CEs ∪−∆ )(  are not restarted in 's , 

they rather keep whatever is remaining of their lifetime, while events in )'(sk  are 

assigned a new lifetime according to their distributions. In the rest of the paper, when 

describing a transition, we will not include the disabled clocks as they can be deduced 

from the active clocks in the states. For more information on SA refer to [2].  

 

2.2. Introduction to the Removal of Timed Delays 

As mentioned before we will consider a special case of stochastic automata that we refer 

to as concurrent generalized stochastic automata or CGSA. CGSA are SA with the 

following restrictions: 
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1. At most (,Μ for some )0≥Μ  generally distributed clocks are enabled 

simultaneously, and no other generally distributed clock can be enabled until they 

are all disabled. So in any state of a CGSA, if two (or more) generally distributed 

clocks are active, then these clocks have the same elapsed lifetime. In other words 

they were activated at the same time instant. 

2. All clocks have a continuous distribution. 

3. The expiration of any single clock induces a transition, and it induces exactly one 

transition. 

(Note that the composition of two CGSAs might not result in a CGSA) 

Puliafito et al. [8] proved that with these properties (1-4) the automata is in fact a Markov 

regenerative process. To be able to see this, we consider all the states in the CGSA where  

1. At least one generally distributed clock is initialized or, 

2. no generally distributed clock is active (only exponentially distributed 

clocks are) 

Then this set of states clearly forms the embedded renewal sequence. We call the set of 

these states regenerative states (RS) because once you reach one of them no knowledge 

of the process history is needed to predict the future.  

In [8], Puliafito et al. presented a method to derive the transient and steady state 

probabilities of such processes from their global and local kernels ijE  and ijK .  

 

In this paper, given a CGSA M  with internal timed transitions, we would like to 

eliminate these transitions from the automata while keeping some kind of equivalence. 

We will proceed by eliminating the internal transitions one by one, after each elimination, 

the equivalence is preserved. So given an internal transition from a state s  as follows: 

', ss c⎯→⎯τ  (where τ  is the label that represents an internal action), we have noticed (see 

Section 4.1) that if state s  and all of its direct successors are regenerative, then we can 

remove the τ  transition and obtain a CGSA that is weakly bissimilar to the original one. 

Moreover, we designed an algorithm to transform any state in a CGSA into a 

regenerative one. And this transformation preserves the steady state probability. 

So the τ  elimination will be done in two steps: 
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1. First we transform some of the states of M  into regenerative states, we obtain a 

CGSA 'M , with M  and 'M  having the same steady state probabilities. In this 

step we will benefit from the fact that the transient and steady state probabilities 

of the CGSA are given (as mentioned before, they are calculated using the 

kernels ijE  and ijK ).  

2. Then we will remove the τ  transitions from 'M ; the CGSA "M  obtained will be 

weakly bissimilar to 'M . 

The resulting equivalence between M  and "M  will be denoted by equilibrium- 

equivalence. The equivalence definitions will be presented in the next Section together 

with some preliminary definitions. Then the τ  elimination will be presented in Section 4.  

 

3. Definitions 

 

Definition 1. Successor, invisible successor, and level successor 

Let s  be a state in a CGSA, we call  

• successor of s , written )(sSucc , is the set of all states in the CGSA that can be 

reached from s  by one transition  

• invisible successor of s  or )(sISucc , all the states in the CGSA that can be 

reached from s  by one transition involving an invisible action. 

• Level successor of s  or )(sLSucc , is the set )(sSucc )(
)(

rSucc
sISuccr∈

∪ . 

 

Definition 2. Local trace 

A local trace in a CGSA is a trace: 

n
ca

n
ca ssss nn ⎯⎯⎯ →⎯⎯⎯ →⎯ −−

−
1111 ,

12
,

1 ...  where 1s  is regenerative and nss ,...,2  are not. 

 

Definition 3. Preceding regenerative states of s  

Let s  be a non regenerative state in a CGSA. We define )(sR  as the maximal set of 

regenerative states from which s  is reachable through a local trace. 
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Definition 4. Residual distribution 

Let s  be a state in a CGSA, let Cc ∈  be a clock such that c  is active in s . The residual 

distribution of clock c  in state s : )(Re xcs M
s  is the probability that clock c  will expire 

between ],0[ x  time units after reaching state s  (Note that the calculation of this quantity 

is a complex and difficult task as it depends on the trace of transitions performed until we 

reach state s ). When there is no confusion about the CGSA we will simply write 

)(Re xcss . Note that if )(skc ∈  or if c  is exponentially distributed, then 

)(Re xcss = )(xcs  

 

Definition 5. Structural traces 

An actual trace in a CGSA is a trace of the following form: 

n
tatata ssss nn ⎯⎯ →⎯⎯⎯ →⎯⎯⎯ →⎯ *,

2
*,

1
*,

0 ......2211  where it  is the time when state is  was entered, 

*ia  is the action ia  preceded by any number of τ  transitions with  τ≠ia  for all 

},...,1{ ni ∈ . 

 

Definition 6. Weak bisimulation 

Let =M ),,,,,,( 0 FkACsS a and ='M )',',,',',','( 0 FkACsS a  be two CGSA.  

An equivalence relation 'SSR ×⊂  is a weak bisimulation if whenever 11 'Rss  then 

• 2
*,

1 ss ca⎯⎯→⎯  implies that there exists 2's  such that 2
'*,

1 '' ss ca⎯⎯ →⎯  and 22 'Rss  

• 2
'*,

1 '' ss ca⎯⎯ →⎯  implies that there exists 2s  such that 2
*,

1 ss ca⎯⎯→⎯  and 22 'Rss  

• Moreover, if two actual traces =T n
tatata ssss nn ⎯⎯ →⎯⎯⎯ →⎯⎯⎯ →⎯ *,

2
*,

1
*,

0 ......2211  and 

='T n
tatata ssss nn '......''' *,

2
*,

1
*,

0
2211 ⎯⎯ →⎯⎯⎯ →⎯⎯⎯ →⎯  were followed in M and 'M  

before we reached 1s  and 1's , respectively, such that ii Rss '  for all ni ,...,1= , then 

the probability {in M }, that the transition 2
*,

1 ss ca⎯⎯→⎯  will be done within t  time 

units after reaching 1s  is equal to the probability {in 'M }, that transition 

2
'*,

1 '' ss ca⎯⎯ →⎯  will be done within t  time units after reaching 1's . 

 

Definition 8. Equilibrium Equivalence 
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Let =M ),,,,,,( 0 FkACsS a and ='M )',',,',',','( 0 FkACsS a  be two CGSA with 

SS ⊆' . Let 'S⊆Γ , then M and 'M  are said to be equilibrium equivalent over Γ , or 

'MM Γ≈ , if  for all Γ∈s , the steady state probability of s  in M  and 'M  is the same. 

 

4. Algorithm for Removing Timed Delays 

In this section, we will present the method to remove timed delays. 

If ', ss c⎯→⎯τ  is a τ  transition in a CGSA, then as discussed before, the removal of the τ  

transition will be done in two steps: first we transform )(sLSucc  and s  into regenerative 

states, then we delete the τ  transition. In the next subsection we will present the method 

to transform a non-regenerative state into a regenerative one, then in Subsection 4.2, we 

will present the algorithm to delete the τ  transition with the assumption that )(sLSucc  

and s  are regenerative. 

4.1.  From non-Regenerative to Regenerative 

 

Let s  be a non-regenerative state in a CGSA =M ),,,,,,( 0 FkACsS a , let 

},...,{)( 1 nrrsR =  and let },...,,,...,{ 11 lm eegg  be the active clocks of state s , where the ig  

have a general distribution and the ie  have an exponential distribution. Our aim in this 

section is to transform s  into a regenerative state. In other words, we need to find the 

expected distribution of clocks },...,{ 1 mgg  in state s , i.e. we need to determine 

)(Re tgs js  for },...,1{ mj ∈ . For that, we assume that a steady state probability π  exists 

for the CGSA and that for all 0)(, ≠∈ rSr π . 

 

Theorem 1.  

Let s  be a non-regenerative state in a CGSA =M ),,,,,,( 0 FkACsS a , let 

},...,{)( 1 nrrsR =  and let },...,,,...,{ 11 lm eegg  be the active clocks of state s , where the ig  

have a general distribution and the ie  have an exponential distribution. 



*An extended abstract of this paper appeared in proceedings of the 7th International Workshop 
on Performability Modeling of Computer and Communication Systems: PMCCS-7,2005. 

9
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where )(tE sri
 is the local kernel ))0(|)(()( 1 isr rtTtsPtE

i
>∧= , and )( irλ  is the rate of 

entering state ir  in equilibrium. 

 

Proof. 

We start first with some notation: 

• “ )(∞↓s ” means that we enter state s  at equilibrium 

• “ sr
NR

i → ” means that we travel from ir  to s  and no regenerative state is visited in 

between. 

• “ sr
NR

i →
ε

” means that s  is reached in the interval ],[ εεε d+  given we entered ir  

at time 0, and that no regenerative state is visited in between. 

• “ sr
hssN

i →
ε

},...,{ 1

”means that s  is reached in the interval ],[ εεε d+  given we entered 

ir  at time 0, and that no state among  },...,{ 1 hss is visited on the way. 

 

Being in state s  at equilibrium implies that the last regenerative state visited was 1r , or 

2r ,…., or nr , and that s  was reached ε  time units after entering one of the states ir ’s, 

whereε  is finite.  

)(Re tgs js = jgP(  has expires within t  time units of entering s ))(| ∞↓s   

 

Since the state s  was entered at equilibrium after having been in state 1r , or 2r ,…., or nr , 

we have 



*An extended abstract of this paper appeared in proceedings of the 7th International Workshop 
on Performability Modeling of Computer and Communication Systems: PMCCS-7,2005. 

10

)(Re tgs js =∑
i

r
j

igP(  will expire within  t  time units after entering s   and 

))(| ∞↓→ ssr
NR

i   

But this means that s  is reached in the interval ],[ εεε d+  given we entered one of the 

ir ’s at time 0,ε  being finite. So 

)(Re tgs js = ∫∑
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0
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j

igP  will expire within t  time units after entering s   and 

))(| ∞→ ssr
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ε
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= ∫∑
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(Note that )( irλ  which is the rate of entering state ir  can be calculated using the global 

kernel and without resorting to calculate the steady state probability of the CGSA: if we 

consider the SMP underlying the CGSA (who is defined by the global kernel), then 

d
r

r i
i

)(
)(

πλ =  where )( irπ is the steady state probability of state ir  in the SMP, and d  is 

the average time we stay in state ir  once we enter it) 

 

Theorem 2. 
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Let s  be a non-regenerative state in a CGSA =M ),,,,,,( 0 FkACsS a , let 

},...,{ 1 mgg be the set of active clocks of s . Let  ='M )',,,,,,( 0 FkACsS a be the CGSA 

obtained by transforming s  into a regenerative state as follows: },...,{)(' 1 nggsk =  and 

=)(' is gF )(Re tgs is . Then M  and 'M  have the same steady state probability Mπ  and 

'Mπ  respectively. 

Proof of theorem 2. 

Let Sr ∈  and assume that g  is an active clock of r . We will prove first that 

))((Re ' tgs M
r = ))((Re tgs M

r .  Note that 'M  has one additional regenerative state s , so we 

need to study its effect on the residual time of clock g .  If },...,{ 1 n
M
r rrRS =  then either 

},,...,{ 1
' srrRS n

M
r =  or },...,{ 1

'
n

M
r rrRS = . We will assume without loss of generality that 

},,...,{ 1
' srrRS n

M
r = . 

We have that: 

In both M  and 'M , if we enter state r  in equilibrium, then: 

- Either we were in one of the states },...,{ 1 nrr  then we reached state r  without 

passing by states nrr ,...,1  and s . 

- Or we are coming from state s  then we reached state r  without passing by states 

nrr ,...,1  and s . 

And both cases will produce the same residual time for clock g  in both M  and 'M . 

Hence ))((Re ' tgs M
r = ))((Re tgs M

r . But this implies that the sojourn time distribution in 

every state is unchanged, and that the probability of going from one state to another in 

equilibrium is unchanged. And that implies that the steady state probabilities are 

preserved. 

4.2.  Removing delays 

Let s  be a state in CGSA =M ),,,,,,( 0 FkACsS a  and assume that s  and )(sLSucc are 

all regenerative states. Assume that ', ss c⎯→⎯τ . In this subsection, we will present a 

method to remove this τ  transition from the automata and obtain a CGSA 

'M )',',,',',','( 0 FkACsS a  that is weakly bissimilar to the original one. 
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First, assume that 's  has transitions leading to states: },...,{ 1 mrr  and s  has transitions 

leading to states },...,,'{ 1 nlls , and that },...,,{)( 1 ncccsk =  (refer to Figure 1 ). 

s

r1

s'

ln

τ ,c

l1

                 a2,c1

      an,cn

rm

b1,e1

              bm,em

 
Figure 1. CGSA M  

 

Before proceeding to remove the τ  transition, we note that the probability of going from 

s  to ir  within t  time units of entering s , ))0(/)(( sMrtMp i ==  or simply )(, tP M
rs i

, is 

equal to  

)(, tP M
rs i

= 1
1

1
'

11

1
'

0 0

}))(1())(1(
)()({

1

dtdtec
dt
tde

d
dc n

ij
j

s
j

n

j

s
j

s
i

t t s

εεεε
ε
ε ∏∏∫ ∫

≠
==

−−−
−

  (1) 

which means that, if clock c  expires at time ε  and clock ie  expires at time ε−1t  where 

ε ],0[ 1t∈  and ],0[1 tt ∈  then all active clocks in state s  (i.e. ncc ,...,1 ) have to expire 

after time ε , and all active clocks of state 's  (i.e. mii eeee ,...,,,..., 111 +− ) have to expire 

after time ε−1t . 

 

Similarly, the probability of going from s  to il  within t  time units of entering s  is: 

=)(, tP M
ls i ∫ ∏

≠
=

−−
t n

ij
j

s
j

s
s

i dttctc
dt

tdc

0
1

1
11

1

1 ))(1())(1(
)(

     (2) 

 

To remove the τ  transition, we need to create m  new transitions out of state s : 

i
eb rs ii⎯⎯ →⎯ ', , },...,1{ mi ∈  (see Figure 2). Moreover, we need to change the distribution of 
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the clocks in the originally existing transitions i
cb ls ii⎯⎯→⎯ ,  to i

cb ls ii⎯⎯ →⎯ ', , 

},...,1{ ni ∈ (refer to Figure 2).  

s

r1

ln

l1
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rm

b1,e'1

              bm,e'

 
Figure 2. CGSA 'M  

 

 

So the remaining task would be to determine the new distributions for the clocks 

},...,1{,' mie i ∈  and },...1{,' nic i ∈  in a way that preserves weak bissimulation between 

the two automata. In other words, we need to preserve the probability of going from state 

s  to state ir  ( il  respectively) within t  time units of entering s . This means, we have 

)(, tP M
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= )(', tP M
rs i
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= )(', tP M
ls i

 where: 

)(', tP M
rs i

= 1
1

1
0 1

1
1

1 ))('1())('1(
)('

dttetc
dt

tde n

ij
j

s
j

t n

j

s
j

s
i ∏∫ ∏

≠
==

−−  and 

)(', tP M
ls i

= 1
1

1
0 1

1
1

1 ))('1())('1(
)('

dttcte
dt

tdc n

ij
j

s
j

t n

j

s
j

s
i ∏∫ ∏

≠
==

−−     

Hence 

1
1

1
0 1

1
1

1 ))('1())('1(
)('

dttetc
dt

tde n

ij
j

s
j

t n

j

s
j

s
i ∏∫ ∏

≠
==

−−  = )(, tP M
rs i

   (1i) 

1
1

1
0 1

1
1

1 ))('1())('1(
)('

dttcte
dt

tdc n

ij
j

s
j

t n

j

s
j

s
i ∏∫ ∏

≠
==

−− = )(, tP M
ls i

    (2i) 



*An extended abstract of this paper appeared in proceedings of the 7th International Workshop 
on Performability Modeling of Computer and Communication Systems: PMCCS-7,2005. 

14

So we have mn +  non-linear equations for mn +  unknowns ((1i) for },...,1{ ni ∈ and (2i) 

for },...,1{ mi ∈ ). For ensuring the existence of solutions, the distributions )(, tP M
rs i

, 

},...,1{ ni ∈  and )(, tP M
ls i

},...1{, mi ∈ should be locally integrable.  

However, since states },...,1{, niri ∈  and },...,1{, mili ∈  are regenerative, no information 

about clocks },...,1{,' mie i ∈  and },...,1{,' nic i ∈  is needed once we leave state s . In 

other words, these clocks are only active in s  and their only role is to determine the next 

state once we reach state s . So the distributions of the clocks },...,1{,' mie i ∈  and 

},...,1{,' nic i ∈  are only used for determining the probabilities of reaching states ir  or il , 

that is },...,1{),(', mitP M
ls i

∈  and },...,1{),(', nitP M
rs i

∈ , respectively. However, these 

probabilities were already determined by equations (1) and (2), therefore we will not 

resort here to solving the system of equations (1i), (2i) in order to find the clock 

probabilities. 

 

Claim1. Let s  be a state in CGSA =M ),,,,,,( 0 FkACsS a  and assume that s  and 

)(sLSucc  are all regenerative states. Assume that ', ss c⎯→⎯τ  is a transition in M . Let 

='M )',',',,',,( 0 FkACsS a  be the CGSA obtained from M  by removing the τ  move 

using the method above. Then all states in )}({ sISuccsS ∪− keep their steady state 

probability after the transformation. 

 

Idea behind the proof.  Note that if )}({ sISuccsSr ∪−∈ , and if Γ  is a trace from 0s  

to r  in M  then there exists a trace 'Γ  from 0s  to r  in 'M  such that Γ  and 'Γ  have the 

same visible actions (they also end with the same transition whether visible or not) and 

they both have the same probability distribution. 

Theorem 3. 

Let =M ),,,,,,( 0 FkACsS a  be a CGSA, let ='M )',',',,',,'( 0 FkACsS a be the CGSA 

obtained from M  by removing the timed internal transitions following the algorithm in 

the previous subsections. Then M  and 'M  are equilibrium equivalent.  
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The proof can be easily deduced from Claim 1 and Theorem 2. 

 

One way to study performance in automata is using reward models. Reward models are 

obtained by assigning a reward to every state of the automaton.  A state reward is an 

integer representing the desirability of being in that state. Using these rewards and the 

steady state probability of the automaton the expected reward rate in steady state is 

calculated. For more information refer to [9].  

In the CGSA 'M  of Theorem 3, the performance measures that are preserved are the 

ones obtained from a reward model that assigns zero to all the states that do not keep 

their steady state probability. 

In reliability Analysis, a fail state is assigned the reward 0 while 1 is assigned for the up 

states. If in the automata 'M  the fail states and the recovery states can not be directly 

reached through an internal transition then dependability measures are preserved between 

M  and 'M . 

 

 

5. Conclusion 

The issue of removing internal transitions from stochastic processes has been an open 

problem for quite a while. In this paper, we have presented a solution for this problem in 

the case of concurrent generalized stochastic automata. While removing the internal 

transitions, the steady state probability of a subset of the states of the automata is 

preserved. The subset consists of all states that have no incoming or outgoing internal 

transition. As a future work, we would like to generalize this method to cover a broader 

subclass of stochastic automata.  

The τ -elimination presented in this paper, could also be used as a basis for state 

aggregation in Markov regenerative processes. 
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