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Abstract: We present a method to remove timed delays (timed internal actions) from a subset of
stochastic automata. After removing the internal actions, the steady state probability of a subset
of the states of the automata is preserved. The stochastic automata considered in this paper have

the property of being Markov regenerative processes.

1. Overview

Internal or invisible actions in a process often arise due to communication and
synchronization between the different components of the process [7]. Removing these
internal actions simplifies the system (to reduce the complication of performance
analysis), makes it deterministic, and serves in many useful applications such as
submodul e construction [6].

We consider in this paper processes whose transitions are triggered by the occurrence of
stochastically timed events, these processes may be described using generalized semi-
Markov process algebra [1] or stochastic automata [2]. In these systems, removing the
timed internal action is a challenging open problem. The approach taken so far to remove
internal actions from these systemsis to separate actions from their timing information by
splitting every transition into two transitions. one describing the time delay and the other
is atimeless internal action [1,5], that way removing internal actions from these systems
becomes the trivial problem of removing timeless internal actions [7]. However,
separating actions from their timing information doubles the number of transitions for the
purpose of removing few of these transitions (the ones representing internal actions), so
this approach does not lead to a simplification of the process. Hence the need for
removing timed internal actions, which is achallenging and open problem so far.

In this paper, we present an algorithm to remove timed internal actions, also known as
timed delays, from a subset of stochastic automata. While removing the internal actions,
the steady state probability for a subset of the states of the automata is preserved. The
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subset consists of all those states that do not have an incoming or outgoing internal
transition. The performance measures that are preserved after removing the internal
moves are the ones obtained from a reward model [4] that assigns zero to al the states
that do not keep their steady state probability. In reliability analysis, a fail state is
assigned the reward O while an up state is assigned the reward 1. So if the fail states and
the recovery states are not reached from another state via an internal transition (which is
usually the case) then dependability measures are preserved.

The class of stochastic automata considered in this paper have the property that at any
time, the set of active clocks with a general distribution have the same elapsed lifetime, in
other words they were al enabled at the same time instant, while clocks with an
exponential delay distribution may be set at arbitrary times. The idea behind the
algorithm will be presented in more details in subsection 2.2, but we will first present

some background on Markov regenerative processes and stochastic automata.

2. Introduction

2.1. Markov regenerative processes and Stochastic Automata

We begin our introduction with some background on Markov regenerative process and
stochastic automata as these models are heavily used in this paper. To provide a formal
definition of a Markov regenerative process (MRGP), the notion of a renewa sequence

must be introduced. The following definitions are taken from [8]:

A Markov renewal sequence is defined as the sequence of pairs of random variables

(X,,T,) (usually X, represents the state of the process that was entered at time T, ) for

which the following properties hold:
P{Xy =T =T, S X, =0T, X, T e Xy To} =

n+1

P{XI'H—l = J’T

n+1

~T, <t X, =i} =

P{X, =} T,<t|X,=i}
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where the first equality highlights the Markov property of the process, and the second
shows it homogeneity. According to this definition, the current state of the process alone
determines probabilistically the next state and the duration of time in the current state.

If a Markov renewa sequence (X, T,) is associated with a stochastic process Y(t),

whose behavior between instants T, and T,

n+l

is of any kind, but whose valuein T, is
determined by X, alone, this will be called a Markov regener ative process. Formally
the following property holds for Y(t):
PY(T,+t)=j|Y(),0<u<sT, X, =i} =P{Y(T, +t)=j | X, =i}

=PF{Y(t)= ][ X, =i}
So these processes behave like a Markov process relative to instants T, , which we refer

to as regeneration instants. But between these instants, the process can evolve in any way.

From an intuitive point of view, it can be said that there are instants T,,T,,...,T,,...

between which the behavior of the processis not affected by its previous history. As the
process is homogenous, each of the cycles can be studied as if the point of regeneration

from which the processis examined were T, = 0.

Two quantities capable of describing the evolution of the MRGP are defined:
The local kerne E(t) and the global Kkerne K({). Where

E;(t)=P(Y(t)= AT, >t| X, =i) describes the evolution of the process between two
regeneration instants, and K;, (t) = P(X(t) = j AT, <t| X, =i) describesthe evolution of

the process at the regeneration instants themselves. For more details refer to [8]

Stochastic automaton (SA) is a state automaton whose transitions are triggered by the
occurrence of stochastically timed events. We begin first by enumerating the components
of aSA. A SAisatuple (S,s,,C, A, k, F) where:

e S isanonempty set of states with s,being theinitial state.

e C isasetof clocks,

e A isasetof actions,
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o >C SX(AxX0,,(C)) X0, (C)xS is the set of edges (where g, (C) represents

the set of finite subsets of C), an element of — is represented as s—2% ¢ s
where (a,C)e Axgp,,(C)and E€ p,,(C),

e k:S— . (C) isthe clock setting function which represents all the clocks that

areinitialized when we reach a state, and

e F:CxS—>(R—-[0]1) (where R represents the set of positive real numbers) is
the clock distribution function such that F(c)(t)=0 for t<Oand

lim,_,_ F,(c)(t) =1. For smplicity of notation, we will denote F_(c)(t) by c(t).

t—oo

(Note that the distribution of the clock depends on the state it was initialized in).

As soon as state s is entered, al clocks ¢ in k(s) are initialized according to their
probability distribution function F,(c) . Once initialized, clocks start counting down until

they either expire or are disabled. A clock expires if it reaches the vaue 0. The
occurrence of an action is controlled by the expiration of clocks. Thus whenever thereisa
transition s—25—¢ s' and the system isin state s, action a can happen as soon as all
clocksin set C expire, clocksin E are then disabled and the automaton moves to state
S'. The active clocks of a state s are formed from the active clocks of the previous state
that have not expired or disabled together with the set of clocks that are initialized in s:

k(s). So if A(s)denotes the active clocks of state s, the active clocks in state s' would
then be A(S)—EuUC+k(s'). Theclocksin the set A(s)—EuwC arenot restarted in s,
they rather keep whatever is remaining of their lifetime, while events in k(s) are
assigned a new lifetime according to their distributions. In the rest of the paper, when

describing a transition, we will not include the disabled clocks as they can be deduced
from the active clocks in the states. For more information on SA refer to [2].

2.2. Introduction to the Removal of Timed Delays

As mentioned before we will consider a specia case of stochastic automata that we refer
to as concurrent generalized stochastic automata or CGSA. CGSA are SA with the
following restrictions:
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1. At most M,(for some M >0) generaly distributed clocks are enabled

simultaneously, and no other generally distributed clock can be enabled until they
are all disabled. So in any state of a CGSA, if two (or more) generally distributed
clocks are active, then these clocks have the same elapsed lifetime. In other words
they were activated at the same time instant.
2. All clocks have a continuous distribution.
3. The expiration of any single clock induces a transition, and it induces exactly one
transition.
(Note that the composition of two CGSAs might not result in a CGSA)
Puliafito et al. [8] proved that with these properties (1-4) the automataisin fact a Markov
regenerative process. To be able to see this, we consider al the states in the CGSA where
1. Atleast one generally distributed clock isinitialized or,
2. no generally distributed clock is active (only exponentially distributed
clocks are)
Then this set of states clearly forms the embedded renewa sequence. We call the set of
these states regenerative states (RS) because once you reach one of them no knowledge
of the process history is needed to predict the future.
In [8], Puliafito et al. presented a method to derive the transient and steady state

probabilities of such processes from their global and local kernels E; andK; .

In this paper, given a CGSA M with internal timed transitions, we would like to
eliminate these transitions from the automata while keeping some kind of equivalence.
We will proceed by eliminating the internal transitions one by one, after each elimination,
the equivalence is preserved. So given an internal transition from a state s as follows:
s—=—s' (where 7 isthelabel that represents an internal action), we have noticed (see
Section 4.1) that if state s and all of its direct successors are regenerative, then we can
remove the 7 transition and obtain a CGSA that is weakly bissimilar to the original one.
Moreover, we designed an agorithm to transform any state in a CGSA into a
regenerative one. And this transformation preserves the steady state probability.

So the 7 elimination will be done in two steps:
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1. First we transform some of the states of M into regenerative states, we obtain a
CGSA M', with M and M' having the same steady state probabilities. In this
step we will benefit from the fact that the transient and steady state probabilities
of the CGSA are given (as mentioned before, they are calculated using the
kernels E; andK ).

2. Thenwewill removethe 7 transitionsfrom M"; the CGSA M" obtained will be
weakly bissimilarto M".

The resulting equivalence between M and M" will be denoted by equilibrium-
equivalence. The equivalence definitions will be presented in the next Section together
with some preliminary definitions. Then the 7 elimination will be presented in Section 4.

3. Definitions

Definition 1. Successor, invisible successor, and level successor
Let s beastateinaCGSA, we call
e successor of s, written Succ(s), is the set of all states in the CGSA that can be
reached from s by one transition
e invisible successor of s or I1Succ(s), al the states in the CGSA that can be
reached from s by one transition involving an invisible action.

e Leve successor of s or LSucc(s), isthe set Succ(s) > ( )Sjcc(r).

Definition 2. Local trace

A local tracein aCGSA isatrace:

§—24s,..5, ,—2l 55 where s, isregenerativeand s, ,..., S, are not.

Definition 3. Preceding regenerative statesof s
Let s be a non regenerative state in a CGSA. We define R(s) as the maximal set of

regener ative states from which s isreachable through alocal trace.
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Definition 4. Residual distribution
Let s beastatein aCGSA, let ce C beaclock suchthat ¢ isactivein s. Theresidual

distribution of clock ¢ in state s: Res!" c(x) is the probability that clock ¢ will expire
between [0, x] time units after reaching state s (Note that the calculation of this quantity

isacomplex and difficult task as it depends on the trace of transitions performed until we

reach state s). When there is no confusion about the CGSA we will simply write

Res.,c(x). Note that if cek(s) or if c is exponentially distributed, then

Res.c(x) =c*(X)

Definition 5. Structural traces
An actual trace in a CGSA is a trace of the following form:

§,—2h g 2 5g @ho 55 where t, is the time when state s was entered,

a * is the action a preceded by any number of 7z transitions with a, =7 for al

ic{l...n}.

Definition 6. Weak bisimulation
Let M =(S;s,,C,A—,k,F)and M'= (S,s,,C',A,—>,k',F') betwo CGSA.

An eguivalencerelation Rc Sx S' isaweak bisimulation if whenever s Rs'; then
e s —*f s impliesthat thereexists s, suchthat s, —=¢—s', and s,Rs,
e s,—%° g, impliesthat thereexists s, suchthat s, —=*—s, and s,Rs,

e Moreover, if two actual traces T =s,—24 55 % 55 &b 55 and

T=s,—2xh 3 2L 59 . —2h 59 were followed in Mand M’
before we reached s, and s, respectively, such that s Rs, for al i =1...,n, then
the probability {inM }, that the transition s, —<— s, will be done within t time
units after reaching s, is equal to the probability {inM'}, that transition

s, —%¢ 55, will bedonewithin t time units after reaching s,.

Definition 8. Equilibrium Equivalence
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Let M =(Ss,,C, Ak, F)and M'=(S,s,,C',A,—,k',F') be two CGSA with
ScS.LeaT'cS,then Mand M' are said to be equilibrium equivalent over T, or
M =. M'",if forall se T, the steady state probability of s in M and M" isthe same.

4. Algorithm for Removing Timed Delays
In this section, we will present the method to remove timed delays.

If s—2° g isa 7 transitionin a CGSA, then as discussed before, the removal of the 7

transition will be done in two steps: first we transform LSucc(s) and s into regenerative

states, then we delete the 7 transition. In the next subsection we will present the method
to transform a non-regenerative state into a regenerative one, then in Subsection 4.2, we

will present the algorithm to delete the 7 transition with the assumption that LSucc(s)

and s areregenerative.

4.1. From non-Regenerative to Regenerative

Let s be a non-regenerative state in a CGSA M = (S,s,,C, Ak, F), let
R(s) ={r,,...,r,} andlet{g,,....0,.€,...,.6} betheactiveclocks of state s, wherethe g,
have a general distribution and the e have an exponential distribution. Our aim in this

section is to transform s into a regenerative state. In other words, we need to find the

expected distribution of clocks {g,,...,g,,} in state s, i.e. we need to determine
Res.g;(t) for je{l..,m . For that, we assume that a steady state probability 7 exists

for the CGSA and that for @l r e S,z(r) # 0.

Theorem 1.

Let s be a non-regenerative state in a CGSA M = (S,s,,C, A,k F), let
R(s) ={r,,...,r,} andlet{g,,....0,.€,....6} betheactive clocks of state s, wherethe g,

have a general distribution and the e have an exponential distribution.
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Zﬂ( )J rs(«9) gj (;+8) g, (8))
Res,g, (t)— 9, (€)
Zl(ri)Er,s(‘x’)

where E, (t) istheloca kernel E, ((t) = P(s(t) AT, >t[r;(0)), and A(r,) is the rate of

entering state r; in equilibrium.

Pr oof.

We start first with some notation:

e “s"(e0)” meansthat we enter state s at equilibrium
e “r,—s” meansthat wetravel from r, to s and no regenerative state is visited in
NR

between.

e “r,—s” meansthat s isreached in theinterval [£,&+de] given we entered r,

at time 0, and that no regenerative state is visited in between.

£

—> s”meansthat s isreached intheinterval [£,&+de] given we entered

r, at time 0, and that no state among {s,,...,S,} isvisited on the way.

Being in state s at equilibrium implies that the last regenerative state visited was r,, or
r,,....,or r,,andthat s wasreached ¢ time units after entering one of the states r,’s,
whereg isfinite.

Res,g; (t) =P(g; hasexpireswithin t time units of entering s | s* (=)

Since the state s was entered at equilibrium after having beenin state r,, or r,,....,or r

n?

we have
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Ressgj(t):ZP(gjri will expire within t time units after entering s and

I —>S|s" ()

But this means that s is reached in the interval [&,€+ de] given we entered one of the

r,’sattime0, e beingfinite. So
Ressgj(t):J'Z{P(gjr' will expire within t time units after entering s and
o i
I —>s|s(=))}
NR
:.fZP(gjri will expire within t time units after entering s| S(=) and

. P(n s s|s' (=)

I —>9). NR )de
NR de

ZJ‘ g (t+€) 9; ())/I(r)P(s (S)AT >8|r(0))dg
&

i=1 o 1_91‘
> A0E ()
”dErs(e) 9 (t+e)-g;' ()
Atr) J ) de
_Z j 1-g;"(e)
> A1)E, (<)

(Note that A(r;) which is the rate of entering state r, can be calculated using the global

kernel and without resorting to calculate the steady state probability of the CGSA: if we
consider the SMP underlying the CGSA (who is defined by the global kernel), then

( )

A(r;) =— where 7z(r;) is the steady state probability of state r, in the SMP, and d is

the average time we stay in state r, once we enter it)

Theorem 2.
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Let s be a non-regenerative state in a CGSA M =(S;s,,C, Ak, F), let
{9,,-,0,,} bethe set of active clocksof s. Let M'=(S,s,,C, A, k,F") bethe CGSA
obtained by transforming s into a regenerative state as follows: k'(s) ={g,,...,9,} and
F'.(9;)=Res.g; (t). Then M and M' have the same steady state probability z,, and
7Ty respectively.

Proof of theorem 2.

Let re S and assume that g is an active clock of r. We will prove first that
Res" (g)(t)=Res (g)(t) . Notethat M"' has one additional regenerative state s, so we

need to study its effect on the residua time of clock g. If RS" ={r,,..,r.} then either

RS™ ={r,,...,r,,s or RS" ={r,,...,r.} . We will assume without loss of generality that

r

RSY ={r,,...1,,S .

r

We have that:
Inboth M and M', if we enter state r in equilibrium, then:

- Either we were in one of the states {r,,...,r,} then we reached state r without

r and S.

passing by states r, ,...,r,,
- Or we are coming from state s then we reached state r without passing by states
f,...,l, ad s.
And both cases will produce the same residual time for clock g inboth M and M".
Hence Res" (g)(t)=Res" (g)(t) . But this implies that the sojourn time distribution in

every state is unchanged, and that the probability of going from one state to another in
equilibrium is unchanged. And that implies that the steady state probabilities are

preserved.

4.2. Removing delays
Let s beastatein CGSA M = (S,s,,C, A—,k,F) and assume that s and LSucc(s) are
al regenerative states. Assume that s—=°“—s'. In this subsection, we will present a

method to remove this 7 transition from the automata and obtain a CGSA

M'(S,s,.C', A,—,Kk' F") that isweakly bissimilar to the original one.
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First, assume that s' has transitions leading to states: {r,,...,r,,} and s has transitions

1" ; m

leading to states {s,1,...,1,} , and that k(s) ={c,c,,...,c,} (refertoFigurel).

Figure 1. CGSA M

Before proceeding to remove the 7 transition, we note that the probability of going from
S to r; within t time units of entering s, p(M(t)=r,/M(0) =s) or simply PQ’!i t),is
equal to
Fdcc(e) de® (t, —¢
P ()= j { j (e) ge L )H(l c (e))H(l e, - )i, ®

J¢I

which means that, if clock ¢ expiresat time £ and clock e expires at time [' —< where
€e[0,t,] and t, €[0,t] then all active clocks in state s (i.e. c,,...,C,) have to expire

after time ¢, and all active clocks of state s' (i.e. g,....e ;,e

i+l

e, ) have to expire

aftertime [ — <.

Similarly, the probability of going from s to I, within t time units of entering s is:

ORI RBONIRES)) (R ) ©

0 l J=1
j#i

To remove the 7 transition, we need to create m new transitions out of state s:
s—2& 1., ie{d..,m (seeFigure 2). Moreover, we need to change the distribution of
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the clocks in the originaly existing transitions s—29 |

i €{1,...,n} (refer to Figure 2).

Figure2. CGSA M’

to s—2&l,,

So the remaining task would be to determine the new distributions for the clocks

€ ,ie{l..m and c',ie{l..n} in away that preserves weak bissmulation between

the two automata. In other words, we need to preserve the probability of going from state

s to state r, (I, respectively) within t time units of entering s. This means, we have

Psffl (t)=P;fl'(t) and PST (t) :P;l’:'(t) where:

Py = [ Ta-c @[ Ta-¢, @,

J#i

Py 0= [ Ta-e @[T a-c @,

J#i

Hence

j %H a-c e[ [a-e, ), =P

J#

J %ﬁ (1-e) (tl))ﬁ (1-c,° &), =P (t)

J#i

and

(L)

(2)
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So we have n+ m non-linear equations for n+ m unknowns ((1) for i€ {1,...,n} and (2)
for ie{l...,m). For ensuring the existence of solutions, the distributions Psf’r'l (1),
ie{l...,n} and PSTI (t) ,i e {1,...m} should be locally integrable.

However, since states r,,ie{1...,n} and |.,ie{l...,m} are regenerative, no information
about clocks €,ie{l...m and c',ie{l..,n} is needed once we leave state s. In

other words, these clocks are only activein s and their only role is to determine the next

state once we reach state s. So the distributions of the clocks € ,ie{1,....m} and
c,ie{l..,n} areonly used for determining the probabilities of reaching states r, or |,
that is P) (t).ie{l..m} and PR (t),ie{l..,n}, respectively. However, these

probabilities were already determined by equations (1) and (2), therefore we will not
resort here to solving the system of equations (1), (2) in order to find the clock

probabilities.

Claiml. Let s be a state in CGSA M = (S,s,,C, A—>,k,F) and assume that s and
LSucc(s) are al regenerative states. Assume that s—=“—¢s' is a transition in M . Let
M'=(Ss,,C', A" k',F") bethe CGSA obtained from M by removing the 7 move

using the method above. Then al states in S—{su ISucc(s)} keep their steady state
probability after the transformation.

|dea behind the proof. Notethat if re S—{suISucc(s)}, and if T isatrace from s,
tor in M thenthereexistsatrace I'" from s, to r in M' suchthat I" and I"" have the

same visible actions (they aso end with the same transition whether visible or not) and
they both have the same probability distribution.
Theorem 3.

Let M =(S,s,,C, A,k F) beaCGSA, let M'= (S,s,,C', A" k',F") be the CGSA

obtained from M by removing the timed internal transitions following the algorithm in
the previous subsections. Then M and M' are equilibrium equivalent.
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The proof can be easily deduced from Claim 1 and Theorem 2.

One way to study performance in automata is using reward models. Reward models are
obtained by assigning a reward to every state of the automaton. A state reward is an
integer representing the desirability of being in that state. Using these rewards and the
steady state probability of the automaton the expected reward rate in steady state is
calculated. For more information refer to [9].

In the CGSA M' of Theorem 3, the performance measures that are preserved are the
ones obtained from a reward model that assigns zero to al the states that do not keep
their steady state probability.

In reliability Analysis, afail state is assigned the reward O while 1 is assigned for the up
states. If in the automata M* the fail states and the recovery states can not be directly
reached through an internal transition then dependability measures are preserved between
M and M'.

5. Conclusion

The issue of removing internal transitions from stochastic processes has been an open
problem for quite a while. In this paper, we have presented a solution for this problem in
the case of concurrent generalized stochastic automata. While removing the internal
transitions, the steady state probability of a subset of the states of the automata is
preserved. The subset consists of all states that have no incoming or outgoing internal
transition. As a future work, we would like to generalize this method to cover a broader
subclass of stochastic automata.

The 7 -elimination presented in this paper, could aso be used as a basis for state

aggregation in Markov regenerative processes.
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